dcv.multiview.stereo.matching

Members

Aliases

CostType
alias CostType = float
Undocumented in source.
CostVolume
alias CostVolume = Slice!(SliceKind.contiguous, [3], CostType*)
Undocumented in source.
DisparityMap
alias DisparityMap = Slice!(SliceKind.contiguous, [2], DisparityType*)
Undocumented in source.
DisparityMethod
alias DisparityMethod = void delegate(const ref StereoPipelineProperties props, CostVolume costVol, DisparityMap disp)
Undocumented in source.
DisparityRefiner
alias DisparityRefiner = void delegate(const ref StereoPipelineProperties props, DisparityMap disp)
Undocumented in source.
DisparityType
alias DisparityType = uint
Undocumented in source.
StereoCostAggregator
alias StereoCostAggregator = void delegate(const ref StereoPipelineProperties props, CostVolume costVol)
Undocumented in source.
StereoCostFunction
alias StereoCostFunction = void delegate(const ref StereoPipelineProperties properties, inout Image left, inout Image right, CostVolume cost)
Undocumented in source.

Classes

StereoMatcher
class StereoMatcher

Handles boilerplate code common to all stereo matching methods.

StereoPipeline
class StereoPipeline

This class provides a framework for constructing stereo matching pipelines that conform to the taxonomy laid out in Scharstein and Szeliski (2002).

Functions

absoluteDifference
StereoCostFunction absoluteDifference()

Creates a StereoCostFunction that computes the pixelwise absolute difference between intensities in the left and right images

bilateralDisparityFilter
DisparityRefiner bilateralDisparityFilter(uint windowSize, float sigmaCol, float sigmaSpace)

Applies a bilateral filter to the disparity map in order to correct outliers.

emptyDisparityMap
DisparityMap emptyDisparityMap()

Creates an empty disparity map

medianDisparityFilter
DisparityRefiner medianDisparityFilter(size_t windowSize)

Applies a median filter to the disparity map in order to correct outliers.

normalisedCrossCorrelation
StereoCostFunction normalisedCrossCorrelation(uint windowSize)

Computes the normalised cross correlation, also known as the cosine similarity, between image patches.

semiGlobalAggregator
StereoCostAggregator semiGlobalAggregator(size_t numPaths, CostType p1, CostType p2)

Implements the cost aggregation method described by Hirschmuller (2007), commonly known as Semi-Global Matching.

semiGlobalMatchingPipeline
StereoPipeline semiGlobalMatchingPipeline(StereoPipelineProperties props, size_t numPaths, CostType p1, CostType p2)

Creates a StereoPipeline that performs semi-global matching.

squaredDifference
StereoCostFunction squaredDifference()

Creates a StereoCostFunction that computes the pixelwise squared difference between intensities in the left and right images

sumAbsoluteDifferences
StereoCostFunction sumAbsoluteDifferences(uint windowSize)

Computes the sum of absolute differences between two image patches in order to compute the matching cost.

winnerTakesAll
DisparityMethod winnerTakesAll()

Implements the naive winner takes all algorithm for computing a diparity map from a cost volume.

Structs

StereoPipelineProperties
struct StereoPipelineProperties

Contains the properties required to build a StereoPipeline

Meta

Authors

Henry Gouk

License

$(LINK3 http://www.boost.org/LICENSE_1_0.txt, Boost Software License - Version 1.0).